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Dynamic stability and behavior of an automatic dynamic balance (ADB) are
analyzed by a theoretical approach. Using Lagrange's equation, we derive the
non-linear equations of motion for an autonomous system with respect to the polar
co-ordinate system. From the equations of motion for the autonomous system, the
equilibrium positions and the linear variational equations are obtained by the
perturbation method. Based on the variational equations, the dynamic stability of
the system in the neighborhood of the equilibrium positions is investigated by the
Routh}Hurwitz criteria. The results of the stability analysis provide the design
requirements for the ADB to achieve balancing of the system. In addition, in order
to verify the stability of the system, time responses are computed by the
generalized-a method. We also investigate the dynamic behavior of the system and
the e!ects of damping on balancing. ( 1999 Academic Press
1. INTRODUCTION

Unbalance in rotating machines is a common source of vibration excitation. Many
e!orts have been focused on reducing unbalance. When a rotor has a "xed amount
of unbalance, only one time of balancing is su$cient. However, if the unbalance is
varied depending on operating conditions, the unbalance cannot be eliminated by
only once. An automatic dynamic balancer (ADB) is a device to automatically
eliminate the variable unbalance of rotating mechanisms. The ADB may have
many applications, e.g., CD-ROM or DVD drives, washing machines and
machining tools.

Although the ADB has many application areas and many patents were granted
for various types of the ADB, not many studies have been performed on them. An
ADB was theoretically analyzed by Alexander [1] who did not show why it
worked. Cade [2] suggested the requirements of an ADB, but he did not explain the
0022-460X/99/501035#22 $30.00/0 ( 1999 Academic Press



1036 J. CHUNG AND D. S. RO
theoretical background of his suggestion clearly. Recently, Lee [3] and Lee and
Van Moorhem [4] presented theoretical and experimental analyses of an ADB.
They showed that the ADB could balance a rotating system when the system
operated above the critical speed. However, they did not explain why the ADB
could not balance the system in some cases even when it operated above the critical
speed. In other words, their presentation did not provide the explicit requirements
for the ADB to balance the system. Since they derived the equations of motion with
the rectangular co-ordinate system, the equations are for a non-autonomous
system that requires the application of the Floquet theory to stability analysis. The
application of the Floquet theory may be cumbersome and may need a lot of
computation time; hence, it may yield inaccurate stability results. For this reason,
their studies have limitations on the complete stability analysis.

In this paper, we analyze the stability and dynamic behavior of an ADB. The
non-linear equations of motion for the Je!cott rotor with the ADB are derived with
the polar co-ordinate system, which makes it possible to express the equations of
motion as those for an autonomous system. From the equations for the
autonomous system, the equilibrium positions and the linear variational equations
are derived by the perturbation method. Using the Routh}Hurwitz criteria, the
stability of the system is analysed in the neighborhood of the equilibrium positions
that may be divided into the balanced and unbalanced positions. The stability
analysis furnishes the design requirements for the ADB to achieve balancing of
the system. In addition, the time responses of the system are computed by
the generalized-a method [5]. From the response analysis, we verify the results of
the stability analysis and we also demonstrate the e!ects of the #uid damping and
the damping factor on the balancing of the system.

2. NON-LINEAR EQUATIONS OF MOTION

The whirling Je!cott rotor with the ADB is shown in Figure 1 where a disk is
symmetrically located on a shaft supported by two bearings. The centre of mass of
the disk is at G and the centerline of the bearings intersects the plane of the disk at
O. The ADB is composed of a circular disk with a groove containing balls and
a damping #uid. The balls move freely in the groove and the disk rotates with
angular velocity u. As shown in Figure 2, the centroid C is de"ned by the polar
co-ordinates r and h, while the center of mass G is de"ned by eccentricity e and
angle ut for the given position of the centroid. The angular positions of the balls are
given by the pitch radius R and angle /

i
for i"1,2, n (n is the total number of the

balls in the groove).
The non-linear equations of motion for the ADB are derived from Lagrange's

equation given by

d
dt A

L¹
LqR

k
B!

L¹
Lq

k

#

L<
Lq

k

#

LF
LqR

k

"0, (1)

where ¹ is the kinetic energy, < is the potential energy, F is Rayleigh's dissipation
function, and q

k
are the generalized co-ordinates. For the given system, the
JSV 992456



Figure 1. Je!cott rotor with the automatic dynamic balancer.

Figure 2. Con"guration of the automatic dynamic balancer.

AUTOMATIC DYNAMIC BALANCER 1037
generalized co-ordinates are r, h and /
i

(i"1,2, n); therefore, the dynamic
behavior is governed by n#2 independent equations of motion.

The kinetic energy, potential energy and Rayleigh's dissipation function are
needed to derive the equations of motion. Assuming that the disk moves only in the
X> plane, the position vector of the centre of mass G is expressed as

r
G
"[r#e cos (ut!h)] e

r
#e sin (ut!h) eh, (2)
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1038 J. CHUNG AND D. S. RO
and the position vector of the ith ball is given by

r
Bi
"[r#R cos(/

i
#ut!h)] e

r
#R sin(/

i
#ut!h) eh, i"1, 2,2, n, (3)

where e
r
and eh are the unit vectors in the r and h directions respectively. Assuming

that the balls have small radii and equal mass, the kinetic energy of the ADB is
given by

¹"1
2

I
G
u2#1

2
Mr5

G
) r5

G
#1

2
m

n
+
i/1

r5
Bi
) r5

Bi
, (4)

where I
G

is the mass moment of inertia of the disk with respect to G, M is the mass
of the disk, and m is the mass of a ball. Substitution of equations (2) and (3) into
equation (4) yields

¹"1
2

(I
G
#Me2)u2#1

2
(M#nm) (rR 2#r2hQ 2)!Meu [rR sin (ut!h)!rhQ cos(ut!h)]

#m
n
+
i/1

M1
2

R2 (/Q
i
#u)2!R (/Q

i
#u) [rR sin (/

i
#ut!h)

!rhQ cos (/
i
#ut!h)]N. (5)

Neglecting gravity, the potential energy can be expressed as

<"1
2

kr2, (6)

where k is the equivalent sti!ness of the rotor system. On the other hand, Rayleigh's
dissipation function is given by

F"1
2

c (rR 2#r2h0 2)#1
2

D
n
+
i/1

/Q 2
i
, (7)

where c is the equivalent damping coe$cient and D is the viscous drag coe$cient. It
is assumed that the balls have the same viscous drag coe$cient D.

The non-linear equations of motion are obtained by substituting equations
(5)}(7) into equation (1):

(M#nm) (rK!rhQ 2)#crR#kr!mR
n
+
i/1

[/G
i
sin (/

i
#ut!h)

#(/Q
i
#u)2 cos (/

i
#ut!h)]"Meu2 cos (ut!h), (8)

(M#nm) (rhG!2rR hQ )#crhQ #mR
n
+
i/1

[/G
i
cos (/

i
#ut!h)

!(/Q
i
#u)2 sin (/

i
#ut!h)]"Meu2 sin (ut!h), (9)

mR2/G
i
#D/Q

i
!mR (rK!rhQ 2) sin (/

i
#ut!h)#mR (rhG#2rR hQ ) cos (/

i
#ut!h)

"0, i"1, 2,2, n. (10)
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AUTOMATIC DYNAMIC BALANCER 1039
During the derivation, the angular speed u is assumed constant. In the case that
there is no ball, i.e., m"0, the equations of motion (8)}(10) reduce to th equations
for the Je!cott rotor which are expressed as

M (rK!rhQ 2)#crR#kr"Meu2 cos(ut!h), (11)

M (rhG#2r5 hQ )#cr h0 "Meu2 sin(ut!h). (12)

3. EQUILIBRIUM POSITIONS AND LINEAR VARIATIONAL EQUATIONS

Stability analysis can be carried out easily by transforming the equations of
motion for a non-autonomous system into those for an autonomous system. As
seen in equations (8)}(10), the equations of motion correspond to the
non-autonomous system. Generally, it is very cumbersome to analyze the stability
for non-autonomous systems. If the stability analysis is performed for the
non-autonomous system, the linearized equations of motion around equilibrium
positions become ordinary di!erential equations with parametric excitation. In this
case, the stability analysis requires the application of the Floquet theory, which
results in inaccuracy and much computation time. On the other hand, since
h increases monotonically with time, it is impossible to determine the equilibrium
positions with respect to h. To overcome the above di$culties, this study uses
a generalized co-ordinate t instead of h, which is de"ned by

t"ut!h. (13)

The generalized co-ordinate t represents the angle from the r direction to the
centre of mass G, as shown in Figure 2.

Since the state equations can be conveniently used to analyze the stability of the
system, using equation (13), let us rewrite the equations of motion (8)}(10) as the
state equations. To do this, it is necessary to denote the velocities, rR , t0 , and /0

i
by

new symbols:

rR $%&" rL , t5 $%&" tL , /Q
i
$%&"/K

i
. (14)

Substituting equation (13) into equations (8)}(10) and using the notations given by
equation (14), the equations of motion can be expressed as the state equations
which are 2n#4 "rst-order di!erential equations. The state equations may be
written by a matrix}vector equation

A (x)x5 "N (x), (15)

and

x"Mr, t, /
1
, /

2
,2,/

n
, rL , tL , /K

1
, /K

2
,2, /K

n
]T, (16)

A"C
I 0
0 MD, (17)

N"MN
r
, Nt, N

(1
, N

(2
,2, N/n, NrL , Nt) , N/K 1, N/) 2,2, N/) nNT, (18)
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1040 J. CHUNG AND D. S. RO
in which I is the (n#2)](n#2) identity matrix and

M"C
M#nm 0 !mRS

1
!mRS

2
2 !mRS

n
0 (M#nm)r !mRC

1
!mRC

2
2 !mRC

n
!mRS

1
!mRrC

1
mR2 0 2 0

!mRS
2

!mRrC
2

0 mR2 2 0

F F F F } F

!mRS
n

!mRrC
n

0 0 2 mR2
D , (19)

N
r
"rL , (20)

Nt"t) , (21)

N
(i
"/K

i
, i"1,2,2, n, (22)

NrL"(M#nm) r (u!tK )2!crL!kr#Meu2 cost

#mR
n
+
i/1

(/)
i
#u)2 cos (/

i
#t), (23)

NtL "2(M#nm) rL (u!t) )#cr(u!tK )!Meu2 sint

!mR
n
+
i/1

(/)
i
#u)2 sin (/

i
#t), (24)

N/K i"!D/)
i
!mRr (u!tK )2 sin (/

i
#t)!2mRrL (u!t) ) cos (/

i
#t),

i"1,2,2 , n. (25)

In equation (19), S
i
and C

i
are given by

S
i
"sin (/

i
#t), C

i
"cos (/

i
#t). (26)

Notice that equation (15) is for an autonomous system so the stability is easily
analyzed.

The equilibrium positions are obtained from equation (15) by letting x5 "0. That
is, they are computed from

N(x*)"0, (27)

where x* represents the equilibrium positions denoted by

x*"Mr*, t*, /*
1
, /*

2
,2, /*

n
, rL *, t) *, /K *

1
, /) *

2
,2, /K *

n
NT. (28)

In other words, the constant r*, t*, /*
i
, rL *, t) * and /) *

i
are determined by solving the

2n#4 algebraic equations represented by equation (27). The algebraic equations
are simpli"ed as

rL *"0, t) *"0, /) *
i
"0, i"1,2,2, n, (29)

[k!(M#nm)u2] r*!mRu2
n
+ cos (/*

i
#t*)"Meu2 cost*, (30)
i/1
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cur*!mRu2
n
+
i/1

sin (/*
i
#t*)"Meu2 sin t*, (31)

r* sin (/*
i
#t*)"0, i"1,2,2, n. (32)

The equilibrium positions may be classi"ed into two cases: the balanced and
unbalanced cases, which correspond to r*"0 and r*O0 respectively. When the
system is balanced, i.e., r*"0, equations (30) and (31) can be rewritten as

e
R
#

m
M

n
+
i/1

cos /*
i
"0, (33)

n
+
i/1

sin /*
i
"0. (34)

Equations (33) and (34) imply that the balls balance the disk statically with
positions given by /*

i
. On the other hand, when the system has the unbalanced

equilibrium positions (r*O0), the values of r*, t* and /*
i

can be determined from
equations (30)}(32):

r*"

amRu2 [k!(M#nm)u2]$Meu2 J[k!(M#nm)u2]2#[1!(amR/Me)2] c2 u2

[k!(M#nm)u2]2#c2u2
,

(35)

t*"tan~1
cur*

[k!(M#nm)u2] r*!amRu2
, (36)

/*
i
"a

i
n!t*, i"1, 2,2, n, (37)

where a
i
are integers depending on the positions of the balls and

a"
n
+
i/1

(!1)ai . (38)

It is noted that the value of r* in equation (35) should be real and positive. If r* is
negative or complex, this means that the equilibrium positions de"ned by equations
(35)}(37) do not exist. In the case that the system has no ball, equations (35) and (36)
are reduced to

r*"
Meu2

J(k!Mu2)2#c2u2
, (39)

t*"tan~1
cu

k!Mu2
, (40)

which are the amplitude and phase of the Je!cott rotor respectively.
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1042 J. CHUNG AND D. S. RO
The perturbation method is used to derive linear variational equations from the
non-linear equations of motion. The perturbed motion in the neighborhood of the
equilibrium positions can be expressed in the form

x"x*#Dx, (41)

where Dx is the perturbation of x:

Dx"MDr, Dt, D/
1
, D/

2
,2,D/

n
, DrL , Dt) , D/K

1
, D/K

2
,2 , D/K

n
NT, (42)

in which Dr, Dt, D/
i
, DrL , DtL and D/K

i
are small variations of r, t, /

i
, r( , t) and /)

i
respectively. Introducing equation (41) into equation (15) and recalling that x*
satis"es equation (27), equation (15) can be written as

A (x*#Dx)Dx5 "N (x*#Dx)!N(x*). (43)

Since Dx"0 is a trivial solution of equation (43), expanding equation (43) about
Dx"0 results in

A* Dx5 "B*Dx#O (Dx), (44)

where A* and B* are constant and O is a function of Dx with a second and higher
order. The A* and B* matrices are de"ned by

A*"A (x*), (45)

B*"C
0 I

!K* !C*D , (46)

where

C*"

C
c 2(M#nm)ur* !2mRuC*

1
!2mRuC*

2
2 !2mRuC*

n
!2(M#nm) u cr* 2mRuS*

1
2mRuS*

2
2 2mRuS*

n
2mRuC*

1
0 D 0 2 0

2mRuC*
2

0 0 D 2 0

F F F F } F

2mRuC*
n

0 0 0 2 D
D ,

(47)
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K*"

C
k!(M#nm)u2 u2AMe sint*#mR

n
+

i/1

S*
i B mRu2S*

1
mRu2S*

2
2 mRu2S*

n

!cu u2AMe cost*#mR
n
+

i/1

C*
i B mRu2C*

1
mRu2C*

2
2 mRu2C*

n

mRu2S*
1

mRu2 r*C*
1

mRu2 r*C*
1

0 2 0

mRu2S*
2

mRu2 r*C*
2

0 mRu2 r*C*
2

2 0

F F F F } F

mRu2S*
n

mRu2 r*C*
n

0 0 2 mRu2 r*C*
n

D
(48)

in which

S*
i
"sin (/*

i
#t*), C*

i
"cos (/*

i
#t*). (49)

Equations (47) and (48) may be simpli"ed by using the equations for the
equilibrium positions given by equations (30)}(32). Assuming that the perturbation
Dx is su$ciently small to permit O to be ignored, equation (44) can be
approximated by

A*Dx5 "B*Dx, (50)

which represents the linear variational equation. Note that equation (50) is con"ned
to the neighborhood of the equilibrium positions.

4. STABILITY ANALYSIS

The stability of the system in the neighborhood of the equilibrium positions is
analyzed with the linear variational equations given by equation (50). For
simplicity of the analysis, consider the case that the ADB has two balls, i.e., n"2.
Then the A* and B* matrices become 8]8 matrices. The stability around the
equilibrium positions can be investigated with the eigenvalue problem for equation
(50). Let a solution of equation (50) be

Dx"DXejt, (51)

where j is an eigenvalue and DX is an eigenvector corresponding to j. The
eigenvector can be denoted by

DX"MDR, DW, DH
1
, DH

2
, DRK , DWK , DHK

1
, DHK

2
NT. (52)

Introducing equation (51) in equation (50) yields the eigenvalue problem de"ned by

(B*!jA*) DX"0. (53)
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As is well known, the system is asymptotically stable, when all the eigenvalues have
negative real parts. On the contrary, if at least one of the eigenvalues has a positive
real part, the system is unstable. The eigenvalues can be computed by solving the
characteristic equation obtained by setting

det (B*!jA*)"0, (54)

which can be expressed as a polynomial of j:

c
0 A

j
u

n
B
8
#c

1A
j
u

n
B
7
#c

2A
j
u

n
B
6
#c

3 A
j
u

n
B
5
#c

4A
j
u

n
B
4
#c

5A
j
u

n
B
3

#c
6 A

j
u

n
B
2
#c

7

j
u

n

#c
8
"0, (55)

where u
n

is the natural frequency of the system without balls, de"ned by
u

n
"Jk/M.
First, consider the characteristic equation for the stability in the neighborhood of

the equilibrium positions corresponding to r*"0. When the ADB has only two
balls, the equilibrium positions for the balls are determined from equations (33) and
(34):

/*
1
"!/*

2
"tan~1

J(2(m/m)/ (e/R))2!1
!1

. (56)

As seen in equation (56), in order that /*
1

and /*
2

exist when r*"0, the ball mass
satis"es the condition given by

m
M

*

1
2

e
R

. (57)

Since the equilibrium position of t* is not de"ned when r*"0, the characteristic
equation cannot be determined directly from equation (54). This means that
a special treatment is required to obtain the characteristic equation. Equation (53)
represents eight linear algebraic equations with nine unknows (DR, DW, DH

1
, DH

2
,

DRK , DWK , DHK
1
, DHK

2
and t*); therefore, an additional equation is required for

equation (53) to have a non-trivial solution. This equation is given by the identity
equation

sin2 t*#cos2 t*"1. (58)

Eliminating t* by some algebraic manipulations for equations (53) and (58), we
obtain the characteristic equation in the form of equation (55). The coe$cients of
equation (55) are as follows:

c
0
"!(e6 2#2m6 ) (e6 2!2mN !4mN 2), (59)

c
1
"8mN 2 (1#mN ) (b1 #2mN b1 #2f), (60)

c
2
"4mN 2 (2#2mN #b1 2#4mN b1 2#4mN 2bM 2#8bM f#12mN b1 f#4f2)

!4(e6 4!2mN 2!4e6 2mN 2!6mN 3!4mN 4) u6 2, (61)
JSV 992456



AUTOMATIC DYNAMIC BALANCER 1045
c
3
"8mN 2 [(2b1 #3mN b1 #2f#2b1 2f#4mN b1 2f#4b1 f2)

#(2b1 #7mN b1 #6mN 2 bM #2f#8mN f)u6 2], (62)

c
4
"4mN 2 (1#2bM 2#4mN b1 2#8b1 f#4b1 2f2)

#8mN 2 (!1#4mN #b1 2#4mN b1 2#4mN 2b1 2#4b1 f#12mN b1 f#2f2)u6 2

#(!6e6 4#4mN 2#24e6 2mN 2#24mN 3#32mN 4) u6 4 , (63)

c
5
"8mN 2 [b1 (1#2b1 f)#2b1 (!1#mN #b1 f#2mN b1 f#2f2)u6 2

#(b1 #5mN b1 #6mN 2b1 #6mN f)uN 4], (64)

c
6
"4mN 2b1 2!8mN 2b1 2 (1#2mN !2f2) u6 2#4mN 2 (!2mN #b1 2#4mN b1 2
#4mN 2b1 2#12mN b1 f)u6 4!4(e6 4!4e6 2mN 2!2mN 3!4mN 4)uN 6, (65)

c
7
"8mN 3b1 (!1#u6 2#2mN u6 2) u6 4, (66)

c
8
"!e6 2 (e6!2mN ) (eN#2mN )uN 8, (67)

where f is the damping factor of the system given by

f"
c

2JMk
, (68)

and mN , e6 , u6 and b1 are non-dimensional parameters de"ned by

mN "
m
M

, e6 "
e
R,

u6 "
u
u

n
,

b1 "
D

mR2u2
n

. (69)

Next, consider the equilibrium positions and characteristic equation when
r*O0. In this case, the equilibrium positions are computed from equations (35) to
(37). The equilibrium positions possessing the stable region are expressed by

r*
R
"

2mN u6 2 [1!(1#2mN )u6 2]#eNuN 2 J[1!(1#2mN )u6 2]2#[1!(2mN /eN )2] (2fu6 )2
[1!(1#2mN ) u6 2]2#(2fu6 )2

, (70)

t*"tan~1
2fu6 r*

[1!(1#2mN )u6 2] r*!2RmN uN 2
, (71)

/*
1
"/*

2
"!t*. (72)

In fact, there exists other equilibrium positions di!erent from the positions de"ned
by equations (70)}(72). However, since these positions are unstable singular points
under any circumstance, we do not have further discussion about them.
Substituting r*, t*, /*

1
and /*

2
given by equations (70)}(72) into equation (54), we

can easily obtain the characteristic polynomial in the form of equation (55). The
coe$cients of the polynomial are too complicated to express them in closed forms,
so they are not presented in this paper.
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Figure 3. Stability for the variation of u/u
n
and f when m/M"e/R"bM "0)01.

1046 J. CHUNG AND D. S. RO
The Routh}Hurwitz criteria are used to investigate the stability of the system,
because it may be a formidable task to solve the characteristic equation accurately.
The Routh}Hurwitz criteria provide the necessary and su$cient conditions for all
the roots of the characteristic equation to have negative real parts. The stability of
the system is investigated for the variations of the non-dimensional system
parameters such as u/u

n
, m/M, e/R, f and b1 . Considering the variations of all the

system parameters hinders the e$cient description of the stability; hence, the
stability is checked with the variations for a pair of parameters, for example, u/u

n
versus f, u/u

n
versus b1 , u/u

n
versus e/R, u/u

n
versus m/M, or e/R versus m/M.

The in#uence of the energy dissipation factors, f and b1 , on the stability of the
system is analyzed in the neighborhood of the equilibrium positions. When
m/M"e/R"b1 "0)01, the stability for the variations of u/u

n
and f is presented in

Figure 3. The stable region I bounded by the solid line represents the stable region
for the equilibrium positions corresponding to r*"0 while the stable region II
bounded by the dotted line represents the stable region for the equilibrium
positions corresponding to r*O0. If the values of u/u

n
and f are inside the stable

region I, the ADB is working, that is, the rotor system becomes balanced.
Otherwise, the system is not balanced even though the values of u/u

n
and f are in

the stable region II. The e!ect of b1 on the stability is similar to that of f, as shown in
Figure 4. So the ADB cannot perform its function for the conservative system
in which f"b1 "0. Consequently, the energy dissipation characteristics are
essential for the ADB to obtain balancing. It is interesting that in some experiments
the system with fO0 becomes balanced even when it has no damping #uid, i.e.,
b1 "0. It is believed that this phenomenon occurs due to the friction between the
race and balls, because the friction is also a dissipation mechanism of energy.
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Figure 4. Stability for the variation of u/u
n
and bM when m/M"e/R"f"0)01.

Figure 5. Stability for the variation of u/u
n
and e/R when m/M"f"bM "0)01.
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Notice that the system is in the stable region II regardless of the values of f and b1 ,
when the operating speed is below the critical speed, i.e., u/ u

n
(1.

The eccentricity of the rotor and the mass of the ball also have an in#uence on the
stability of the system. The balancing of the system can be obtained only if
the eccentricity and ball mass satisfy the condition given by equation (57). The
boundary of this condition is represented by the straight solid lines in Figures 5
JSV 992456



Figure 6. Stability for the variation of u/u
n
and m/M when e/R"f"bM "0)01.

Figure 7. Stability for the variation of m/M when e/R when u/u
n
"2 and f"bM "0)01.
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and 6. Figure 5 describes the stability for u/u
n
versus e/R with the "xed values of

m/M"f"b1 "0)01, while Figure 6 describes the stability for u/u
n

versus m/M
with e/R"f"b1 "0)01. Figures 5 and 6 show that the system is stable around the
equilibrium position corresponding to r*O0 if the operating speed u is
approximately less than the critical speed u

n
. When u/u

n
, e/R and m/M are in the

unstable regions of Figures 5 and 6, the system is unstable in the neighborhood of
the equilibrium positions corresponding to both r*"0 and r*O0. Therefore, the
JSV 992456



Figure 8. Stability for the variation of m/M and e/R when u/u
n
"0)5 and f"bM "0)01.

AUTOMATIC DYNAMIC BALANCER 1049
ADB should not only be designed to satisfy that m/M is greater than e/2R, but
u/u

n
, e/R and m/M should also be carefully chosen to guarantee stability. As shown

in Figure 6, the lower limit of u/u
n
, in the stable region I decreases as m/M increases

with the "xed value of the eccentricity. In the cases of u/u
n
"2 and u/u

n
"0)5 with

f"b1 "0)01, the stability for the variations of e/R and m/M is plotted in Figures
7 and 8 respectively. When u/ u

n
"2, the stable regions I and II are divided by the

line e/R"nm/M, as shown in Figure 7. However, when u/u
n
"0)5, as shown in

Figure 8, the stable region I does not exist and the system is in the stable region II
with the exception of the region for small e/R.

5. TIME RESPONSES

To verify the stability analyzed in the previous section and to analyze the
dynamic behavior of the system, the time responses of the non-linear equations are
computed by a direct time integration method. For computation of the responses,
this study adopts the generalized-a method that is an implicit time integration
method. Since the generalized-a method is unconditionally stable, it has an
advantage to choose larger time steps than an explicit method. For example, if the
Runge}Kutta method is applied to this problem, very small time steps are required
to obtain the time responses. To apply the generalized-a method to the non-linear
equations, it is convenient to express equation (15) as a second order non-linear
di!erential equation

G (y, y5 , yK )"M (y) yK#F (y, y5 )"0, (73)

where

y"Mr, t, /
1
, /

2
NT (74)
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M"

C
M#2m 0 !mR sin (/

1
#t) !mR sin (/

2
#t)

0 (M#2m) r !mR cos (/
1
#t) !mR cos (/

2
#t)

!mR sin (/
1
#t) !mRr cos (/

1
#t) mR2 0

!mR sin (/
2
#t) !mRr cos (/

2
#t) 0 mR2 D

(75)

F"

G
!(M#2m) r(u!tQ )2#cr5#kr!Meu2 cost!mR

2
+

i/1

(/Q
i
#u)2 cos (/

i
#t)

!2(M#2m)rR (u!tQ )!cr (u!tQ )#Meu2 sin t#mR
2
+

i/1

(/0
i
#u)2 sin (/

i
#t)

D/Q
1
#mRr (u!t0 )2 sin (/

1
#t)#2mRrR (u!tQ ) cos (/

1
#t)

D/Q
2
#mRr (u!t0 )2 sin (/

2
#t)#2mRrR (u!t0 ) cos (/

2
#t)

H .
(76)

The generalized-a method for equation (73) is given by

M (d
n`1~a

f
) a

n`1~a
m
#F (d

n`1~a
f
, v

n`1~a
f
)"0, (77)

d
n`1

"d3
n
#bDt2 a

n`1
, (78)

v
n`1

"v8
n
#cDta

n`1
, (79)

where

d3
n
"d

n
#Dtv

n
#(1/2!b) Dt2 a

n
, (80)

v8
n
"v

n
#(1!c) Dta

n
, (81)

d
n`1~a

f
"(1!a

f
) d

n`1
#a

f
d
n
, (82)

v
n`1~a

f
"(1!a

f
) v

n`1
#a

f
v
n
, (83)

a
n`1~a

m
"(1!a

m
) a

n`1
#a

m
a
n
, (84)

in which d
n
, v

n
and a

n
are approximations to y (t

n
), y5 (t

n
) and yK (t

n
) respectively;

Dt"t
n`1

!t
n

is the time step; a
f
, a

m
, b, c are the algorithmic parameters of the

generalized a method. When the parameter for the numerical dissipation o
=

is
speci"ed, the above algorithmic parameters are determined. See reference [4] for
the details of the generalized-a method. The initial conditions for the time
integration are given by

d
0
"y (0), (85)

v
0
"y5 (0), (86)
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Figure 9. Time response of the radial displacement when u/u
n
"2 and m/M"e/R"f"

bM "0)01.
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a
0
"!M~1 (y(0)) F(y(0), y5 (0)). (87)

The Newton}Raphson method is used to compute d
n`1

, v
n`1

and a
n`1

with
given Dt, d

n
, v

n
and a

n
. To update the displacement and velocity in equations (78)

and (79), a
n`1

should be computed from equations (77)}(79). Substituting equations
(78) and (79) into equation (77), the resultant equation becomes a non-linear
algebraic vector equation for a

n`1
, if d

n
, v

n
and a

n
are known. This equation may be

written as
G (y (a

n`1
), y5 (a

n`1
), yK (a

n`1
))"0. (88)

By applying the Newton}Raphson method, the updated acceleration a
n`1

can be
obtained from equation (88). The iteration procedure to solve equation (88) for a

n`1
is given by

a ( j`1)
n`1

"a(j)
n`1

#Da (j)
n`1

, (89)

J (a ( j)
n`1

) Da(j)
n`1

"!G (a (j)
n`1

), (90)

where j represents the iteration number for each time step and J (a(j)
n`1

) is the
Jacobian matrix of G (a

n`1
) at a

n`1
"a(j)

n`1
which may be expressed as

J (a(j)
n`1

)"C(1!a
m
)
LG
LyK

#(1!a
f
) cDt

LG
Ly5

#(1!a
f
) bDt2

LG
LyDa

n`1
"a (j)

n`1

. (91)

Time responses are computed for the stable regions I and II as well as the
unstable region to verify the stability. The physical system parameters for
computation are given by M"1kg, k"1]104N/m, c"2N s/m, R"0)1m,
e"1]10~3m, m"0)01 kg, D"1]10~4Nm/s. In this case, the natural
frequency of the system is u

n
"100 rad/s and the corresponding non-dimensional
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Figure 10. Time responses of the ball positions when u/u
n
"2 and m/M"e/R!f"bM "0)01

Figure 11. Time response of the radial displacement when u/u
n
"0)5 and m/M"e/R"f"bM

"0)01
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parameters are m/M"e/R"f"bMQ "0)01. The initial conditions are given
by r(0)"1]10~3 m, t(0)"0, /

1
(0)"453, /

1
(0)"903 and rR (0)"t0 (0)"

/0
1
(0)"/0

2
(0)"0. In the computation, Dt"5]10~5 s and o

=
"1 are used. Note

that the algorithmic parameter o
=
"1 implies that the generalized-a method does

not have the numerical damping.
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Figure 12. Time responses of the ball positions when u/u
n
"0)5 and m/M"e/R"f"bM "0)01

Figure 13. Position of the balls for (a) u/u
n
"2 and (b) u/u

n
"0)5 When m/M"e/R"f"bM "

0)01 and tPR.
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The time responses of the radial displacements and the ball positions are
computed for u/u

n
"2, u/ u

n
"0)5 and u/u

n
"1)25 which correspond to the

stable region I, stable region II and unstable region respectively. In the stable
region I, as shown in Figures 9 and 10, the radial displacement and the ball
positions coverage to zero and constant values, respectively, as time increases. The
converged ball positions are 120 and 2403 which can be computed from equation
(56). This means that the radial displacement and the ball positions approach the
equilibrium positions corresponding to r*"0. Similarly, when u/u

n
"0)5, i.e.,

when the system is in the stable region II, the radial displacement and the ball
positions approach the equilibrium positions corresponding to r*O0, as
illustrated in Figures 11 and 12. In this case, equations (70)}(72) provide
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Figure 14. Time response of the radial displacement when u/u
n
"1)25 and m/M"e/R"f"

bM "0)01.

Figure 15. Time responses of the ball positions when u/u
n
"1)25 and m/M"e/R"f"bM "0)01.
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r/R"1)006]10~2 and /
1
"/

2
"!2)3073 when tPR. The equal values of /

1
and /

1
implies that the balls are overlapped. Notice that the computation of this

study neglects the impact and geometric interference between the balls. When the
system is in the stable regions I and II, the ball psotions are plotted in (a) and (b) of
Figure 13, respectively. Figure 13(a) shows that the rotor system is balance, i.e.,
point C coincides with point O if it is in the stable region I. However, when the
system is in the stable region II, the balls are positioned in the direction of the mass
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Figure 16. Time responses of the radial displacement when u/u
n
"2, m/M

n
"e/R"f"0)01 and

bM "0)05.

Figure 17. Time response of the ball positions when u/u
n
"2, m/M"e/R"f"0)01 and

bM "0)05.
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centre G, as exhibited in Figure 13(b). Therefore, the balls increase the total amount
of unbalance for the system. On the other hand, if the system is in the unstable
region, e.g., u/u

n
"1)25, the radial displacement r and the ball positions, /

1
and

/
2
, do not have the converged values and they are varied continually with time, as

shown in Figures 14 and 15.
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Let us examine the e!ects of the #uid damping on the time responses when the
system is balanced, namely, when u/u

n
"2 and m/M"e/R"f"0)01. In this

case, the radial displacement and the ball positions are more rapidly converged to
those of th equilibrium positions when b1 "0)05 than when b1 "0)01. Comparisons
of Figures 16 and 17 with Figures 9 and 10 exhibits the fact that the #uid damping
b1 is helpful for the system to obtain balancing.

6. CONCLUSIONS

The dynamic stability and time responses have been analyzed for the ADB. For
the stability analysis, the non-linear equations of motion have been derived using
the polar co-ordinate system instead of the rectangular co-ordinate system. It has
been shown that the use of the polar co-ordinate system makes it possible to derive
the equations of motion for the autonomous system, which are very e$cient in
order to analyze the stability.

Based on the equations for the autonomous system, the stability of the system
have been systematically analyzed with the linear variational equations and the
Routh}Hurwitz criteria. For the variations of the operating speed, damping factor,
#uid damping, ball mass and eccentricity, this study investigates the dynamic states
of the system that may be classi"ed into the stable and unstable regions. It is shown
that the stable regions are further divided into the balanced (r*"0) or unbalanced
(r*O0) cases. In particular, the analysis demonstrates that the system may not
achieve balancing even above the critical speed, i.e., u/u

n
'1. Hence, it is expected

that the analysis results provide design requirements for the physical parameters of
a system so that an ADB can obtain balancing. On the other hand, the analysis for
the time responses shows that the system reaches the equilibrium positions with
time when it is in the stable regions. In addition, it is also shown that the #uid
damping b1 is helpful for the ADB to obtain balancing.
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